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Abstract

We continue the work by Aschbacher, Kinyon and Phillips [AKP] as
well as of Glauberman [Glaub1,2] by describing the structure of the finite
Bruck loops. We show essentially that a finite Bruck loop X is the direct
product of a Bruck loop of odd order with either a soluble Bruck loop of
2-power order or a product of loops related to the groups PSL2(q), q = 9
or q ≥ 5 a Fermat prime. The latter possibillity does occur as is shown in
[Nag1, BS]. As corollaries we obtain versions of Sylow’s, Lagrange’s and
Hall’s Theorems for loops.

1 Introduction

Let (X, ◦) be a finite loop; that is a finite set together with a binary operation
◦ on X, such that there exists an element 1 ∈ X with 1 ◦ x = x ◦ 1 = x for all
x ∈ X and such that the left and right translations

λx : X → X, y 7→ x ◦ y, ρy : X → X, x 7→ x ◦ y

are bijections. Loops can be thought of as groups without associativity law.
Given a loop X, let G := 〈ρx : x ∈ X〉 ≤ Sym(X), the so called enveloping

group of X. The set K := {ρx : x ∈ X} is a transversal to H := StabG(1)
and (G, H, K) is called the Baer envelope of X. This connection between loops
and transversals in groups goes back to Baer [Baer], see Section 2. In [Asch]
Aschbacher started the study of loops using group theory [Asch], which turned
out to be a very powerful tool [Asch, AKP, Nag1, BS].

Though loops are a generalization of groups, general loops can be very wild
due to the missing associativity: Left-and right inverses may not be identical,
powers of elements may not be definable in the usual way and many loops
without proper subloops besides the cyclical groups of prime order exist.

In search for natural restrictions on loops, Bol discovered in [Bol] the follow-
ing identity, which today is known as the (right) Bol identity:

((x ◦ y) ◦ z) ◦ y = x ◦ ((y ◦ z) ◦ y) for all x, y, z ∈ X.

A loop is called a (right) Bol loop, if it satisfies the above identity. Bol
himself showed, that this generalization of associativity is quite natural, but
that groups are not the only examples of Bol loops.

∗This research is part of the project “Transversals in Groups with an application to loops”
GZ: BA 2200/2-2 funded by the DFG
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One consequence of the identity is, that the subloop generated by one ele-
ment is a (cyclical) group. Therefore powers and inverses of elements are well
defined.

Examples of G.Nagy [Nag2] however imply, that general Bol loops may still
be quite wild: While groups of odd order are soluble due to work of Feit and
Thompson, simple Bol loops of odd non-prime order exist. Furthermore there
are noncyclic simple Bol loops, which occure from transversals in soluble groups.

A natural further restriction is the following identity known as the automor-
phic inverse property AIP:

(x ◦ y)−1 = x−1 ◦ y−1 for all x, y ∈ X.

This identity implies, that the inverse map ι : X → X, x 7→ x−1 is an
automorphism of the loop. Bol loops with AIP are called Bruck loops and
generalize abelian groups. In the literature Bruck loops occure also under other
names, such as K-loops [Kreuz, Kiech] or gyrocommutative gyrogroups [Ung].

Glauberman showed in [Glaub1] and [Glaub2], that Bruck loops of odd order
behave very well: These loops are soluble and allow generalizations of many
theorems of group theory. His famous Z∗-theorem was originally a byproduct
of this work.

Then, forty years later, Aschbacher, Kinyon and Phillips showed that the
following holds in finite Bruck loops [AKP]:

• Elements of 2-power order and elements of odd order commute in a more
general sense, see Theorem 2 of [AKP].

• Bruck loops are a central product of a subloop of odd order and a subloop
generated by elements of 2-power order.

• Simple Bruck loops are of 2-power exponent.

• The structure of minimal simple Bruck loops is very restricted.

This leaves the Bruck loops of 2-power exponent to be studied. Notice,
that in the simplest case of Bruck loops of exponent 2, the automorphic in-
verse property is already a consequence of the Bol identity and the exponent 2
assumption.

In [Asch], Aschbacher gave powerful restrictions on the structure of minimal
simple Bol loops of exponent 2. Using the restrictions given in Aschbacher’s
paper, Nagy and independently Baumeister and Stein found a simple Bol loop
of exponent 2 and size 96 in April 2007 [Nag1, BS]. Furthermore Nagy produced
an infinite sequence of simple Bol loops of exponent 2 [Nag1]. A bit later a simple
Bruck loop of exponent 4 and size 96 was found by Baumeister and Stein [BS].

Thus the weakening of the associativity law produces lots of generalized
elementary abelian groups, which are simple Bruck loops and live in non-soluble
groups. Recall, that Aschbachers paper [Asch] and its generalizations in [AKP]
restrict only the structure of minimal simple loops. Suddenly the question arose,
whether the class of Bruck loops is maybe as wild as the class of general Bol
loops.

In this paper we determine the structure of a finite Bruck loop showing that
the structure of a finite Bruck loop is not as wild as suspected. The definition
of a loop envelope and a twisted subgroup is given in the next section.

2



Theorem 1 Let X be a finite Bruck loop. Then the following holds.

(a) X = Y × Z where Y is a subloop with |Y | odd and Z is a subloop of
2-power exponent.

(b) A loop envelope (G,H, K) of Z where H acts on K and K is a twisted
subgroup consisting of 2-power elements satisfies the following.

(1) G = G/O2(G) ∼= D1 ×D2 × · · · ×De with Di
∼= PGL2(qi) for qi ≥ 5

a Fermat prime or qi = 9 and e a non-negative integer,

(2) Di ∩H is a Borel subgroup in Di,

(3) F ∗(G) = O2(G),

(4) K is the set of involutions in G \G
′
.

Remark 1.1 (1) Notice, that it may be e = 0 in which case G is a 2-group
and X a soluble loop!

(2) If (G,H,K) is the Baer envelope of Z, then it satisfies the assumptions
required in the theorem.

A direct consequence of the theorem is the following.

Corollary 1.2 Let X be a finite Bruck loop with enveloping group G. Then X
is soluble if and only if G = O(G)×O2(G).

Now not only the class of Bruck loops is understood better, but also the
more general class of Bol-Ar-loops.

Corollary 1.3 Let X be a Bol-Ar-loop. Then there is a normal subloop Y of
X which is a group such that X/Y is as described in Theorem 1.

As a group theoretic corollary we obtain:

Corollary 1.4 Let G be a finite group and H ≤ G, such that there is a transver-
sal K to H in G which is the union of 1 ∈ G and G-conjugacy classes of in-
volutions. If G = 〈K〉, then (G, H, K) is a loop envelope to a Bruck loop of
exponent 2 with H acting on K. Therefore, Theorem 1 describes G, H and K.

Moreover, we show Sylow’s Theorem for the prime 2.

Theorem 2 [Sylow’s Theorem] Let X be a finite Bruck loop.

(1) There is a subloop P of X such that |P | = |X|2.
(2) All subloops of X of size |X|2 are conjugate under H, the group of inner

automorphisms of X.

(3) If Y ≤ X with |Y | a power of 2, then there is an h ∈ H such that Y ≤ Ph.

Remark 1.5 In fact, Theorems 12 and 14 of [Glaub2] as well as Theorem 1
yield if p is an odd prime which divides the order of X and which does not divide
q +1 for any Fermat prime q or q = 9, then there is a subloop P of X such that
|P | = |X|p.
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We also get Lagrange’s Theorem for Bruck loops.

Theorem 3 [Lagrange’s Theorem] Let X be a finite Bruck loop and Y ≤ X a
subloop. Then |Y | divides |X|.

Finally, the Theorem of Hall holds as well:

Theorem 4 [Hall’s Theorem] Let X be a finite Bruck loop and let Π be the set
primes dividing the order of X. Then X is soluble if and only if there is a Hall
π-subloop in X for every subset π of Π.

There is even a stronger version of that theorem:

Theorem 5 Let X be a finite Bruck loop. Then X is soluble if and only if
there is a Sylow subloop in X for every prime dividing |X|.

The organisation of the paper is as follows. In the next section we recall the
relevant definitions and notations. Then we collect our previous results which
will be needed in the proof of the theorems. In Section 4 we prepare the proof
of Sylow’s Theorem for the special case of Bruck loops of 2-power exponent
by calculating the number of elements in the intersection of K with a Sylow
p-subgroup. Finally Theorems 1, ..., 5 will be shown in the last section.

2 Definitions and Notation

We follow the notation of Aschbacher [Asch] and [AKP].
Baer observed that loops can be translated into the language of group theory

[Baer]. This translation is as follows. Let X be a loop and let

ρ : X → Sym(X), x → ρx.

Define
G := RMult(X) := 〈ρ(x) | x ∈ X〉 ≤ Sym(X)

H := StabG(1), where 1 ∈ X, and K := {ρx | x ∈ X}.
Then

(1) 1 ∈ K and K is a transversal to all conjugates of H in G.

(2) H is core free.

(3) G = 〈K〉.

The group G is called the enveloping group of X (or right multiplication
group) and the triple (G,H,K) the Baer envelope of the loop. Baer also observed
that whenever (G,H,K) is a triple with G a group, H ≤ G and K ⊆ G satisfying
condition (1), then we get a loop on K by setting x ◦ y = z, x, y ∈ K whenever
z is the element in K such that Hxy = Hz. This loop is called the loop related
to (G, H, K).

The triple (G, H, K) with G a group, H ≤ G and K ⊆ G is called a loop
folder, faithful loop folder or loop envelope if (1), (1) and (2) or (1) and (3) hold,
respectively. In general there are many different loop folders to a given loop.
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If X is a Bol loop and (G,H, K) the Baer envelope of X, then K is a twisted
subgroup, that is 1 ∈ K and whenever x, y ∈ K, then x−1 and xyx is in K. If,
moreover, X is a Bruck loop, then H acts on K by conjugation, [Asch, 4.1]. A
Bruck folder is a loop folder (G,H,K), if the following holds

(1) K is a twisted subgroup

(2) H acts on K by conjugation.

We say that a Bruck folder is a BX2P-folder, if also

(3) The elements in K are of 2-power order

If (G,H,K) is a BX2P-folder, then the loop related to it is a Bruck loop
of 2-power exponent [BSS]. Moreover, notice that the subgroup H of the Baer
envelope induces automorphisms on X in a Bruck loop. These are called the
inner automorphisms of X.

Subloops, homomorphisms, normal subloops, factor loops and simple loops
are defined as usual in universal algebra: A subloop is a nonempty subset which
is closed under loop multiplication.

Homomorphisms are maps between loops which commute with loop multi-
plication. The map defines an equivalence relation on the loop, such that the
product of equivalence classes is again an equivalence class. Normal subloops
are preimages of 1 under a homomorphism and therefore subloops. A normal
subloop defines a partition of the loop into blocks (cosets), such that the set
of products of elements from two blocks is again a block. Such a construction
gives factor loops as homomorphic images with the block containing 1 as the
kernel. Simple loops have only the full loop and the 1-loop as normal subloops.

For instance if (G,H, K) is a loop folder defining a loop X and G0 a normal
subgroup of G which contains H, then (G0, H, G0 ∩ K) is a loop folder to a
normal subloop X0 of X.

A subfolder (U, V, W ) is a loop folder with U ≤ G, V ≤ U∩H and W ⊆ U∩K.
The loop to a subfolder of a loop folder is a subloop of the loop to the loop folder.

Finally we recall the definition of a soluble loop given in [Asch]. A loop X
is soluble if there exists a series 1 = X0 ≤ · · · ≤ Xn = X of subloops with Xi

normal in Xi+1 and Xi+1/Xi an abelian group.
Let π be a set of primes. A natural number n is a π-number if n = 1 or n is

the product of powers of primes in π. Assume that X is a loop such that every
element of the loop generates a group. We say that X is a π-loop, if the order
of X is a π-number. Notice that this definition is different from the one given
in [Glaub1]. For loops of odd order these two concepts coincides (see [Glaub1,
p. 394, Corollary 2]), but not for loops of even order (see the Aschbacher loop
in [BS]).

In order to distginguish the two concepts we propose to use the following
notations: A local π-loop is a loop such that the orders of the elements are all
π-numbers and a global π-loop is a loop such that the order of the loop is a
π-number.

Then there are local 2-loops which are not global 2-loops, see [BS].
We say that a subloop Y of X is a π-Hall subloop, if |Y |π = |X|π.

5



3 Previous results

In the following let (G,H, K) be a loop folder. We can see from the structure
of a subgroup U of G, if it defines a loop.

Lemma 3.1 [BSS, 2.3, 2.4] A subgroup U ≤ G gives rise to a subfolder (U, V, W ),
if and only if U = (U ∩ H)(U ∩ K). Then V = U ∩ H and W = U ∩ K. In
particular, subgroups of G which contain either H or 〈K〉 give rise to subfolders.

Lemma 3.2 [BSS, 3.16 (2) - (4)] Let (G, H, K) be a Bruck folder. Then the
following holds.

(1) There exists a unique τ ∈ Aut(G) with [H, τ ] = 1 and kτ = k−1 for all
k ∈ K.

(2) The set Λ = τK ⊆ Aut(G) is G-invariant.

(3) Subfolders and homomorphic images are Bruck folder.

Notice, that 3.2(3) implies that subloops of Bruck loops are again Bruck
loops. In order to prove Sylow’s Theorem we will work in a group slightly
bigger than G.

Definition 3.3 Let (G,H,K) be a Bruck folder and τ ∈ Aut(G) the automor-
phism introduced in 3.2(1). Then let

G+ := G〈τ〉,

the semidirect product of G with τ ,

H+ := H〈τ〉 ≤ G+ and Λ := τK ⊆ G+.

By 3.2(1) and (2) Λ is a G+-invariant set of involutions.

The following are powerful facts.

Lemma 3.4 [BSS, 3.3] Let (G,H, K) be a BX2P-folder and let G = G/O2(G).
Then

(1) k2 ∈ O2(G) for all k in K.

(2) 1 ∈ K and K is a union of G-conjugacy classes.

(3) Let g ∈ G and h ∈ H. If (hg)k = (hg)−1 for some k in K, then h2 = 1.

We already have some information on soluble Bruck loops, see also [AKP,
Corollary 4].

Lemma 3.5 [BSS, 3.8, 3.9, 3.10] Let (G,H, K) be a BX2P-envelope to a Bruck
loop X of 2-power exponent. Then the following holds

(1) X is soluble if and only if |X| is a power of 2.

(2) If X is soluble, then G is a 2-group.

(3) If G = O2(G)H, then X is soluble.
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In [BSS] we introduced the concept of passive groups.

Definition A finite nonabelian simple group S is called passive, if whenever
(G,H, K) is a BX2P-folder with

F ∗(G/O2(G)) ∼= S,

then G = O2(G)H.

In that case consequently the loop to (G,H, K) is of 2-power size and soluble
by 3.5(3). The main theorems of [BSS], respectively [S] are the following.

Theorem 6 [BSS, Theorem 1] Let (G,H, K) be a loop envelope to a Bruck loop
of exponent 2 such that K is a twisted subgroup and such that H acts on K.
Moreover, assume that every non-abelian simple section of G is either passive
or isomorphic to PSL2(q) for q = 9 or q ≥ 5 is a Fermat prime. Then the
following holds

(1) G := G/O2(G) ∼= D1 × D2 × · · · × De with Di
∼= PGL2(qi) for qi ≥ 5 a

Fermat prime or qi = 9 and e a non-negative integer,

(2) Di ∩H is a Borel subgroup in Di,

(3) F ∗(G) = O2(G),

Theorem 7 [S, Theorem 1] Let (G, H, K) be a BX2P-folder and G := G/O2(G).
If F ?(G) is a non-abelian simple group. Then G is either passive or isomorphic
to PSL2(q) for q = 9 or q ≥ 5 a Fermat prime.

It follows that the order of a Bruck loop of exponent 2 is very restricted:

Corollary 3.6 Let X be a Bruck loop of 2-power exponent. Then

|X| = 2a
e∏

i=1

(qi + 1)

for some e ∈ N∪ {0} and qi = 9 or a Fermat prime. Moreover, |X|2 = 2a+e. If
(G,H, K) is the Baer envelope of X, then 2a = |O2(G) : O2(G) ∩H|.

4 Bruck loops of 2-power exponent

In this section (G,H, K) will always be a faithful BX2P-envelope to a non-
soluble Bruck loop. By Theorems 6 and 7 we have

G := G/O2(G) ∼= D1 ×D2 × ...×De with Di
∼= PGL2(qi)

and qi = 9 or a Fermat prime qi ≥ 5. Furthermore Di ∩ H =: Bi is a Borel
subgroup of Di. Let πi be the projection of G onto Di. We first study H and
K in more detail.

Lemma 4.1 (1) H =
e∏

i=1

Bi.
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(2) If k ∈ K and 1 ≤ i ≤ e, then πi(k) is either 1 or an involution in Di \D′
i.

Proof. By Theorem 6

B :=
e∏

i=1

Bi ≤ H.

The involutions in D′
i invert elements of odd order which are conjugate to ele-

ments in Bi. Therefore, 3.4(2) and (3) imply (2).
Next we aim to show H = B. As Bi is a maximal subgroup of Di, it follows

πi(H) = Bi or Di, for 1 ≤ i ≤ e.
Assume that B < H. Then πj(H) = Dj for some 1 ≤ j ≤ e. This implies

〈BH
j 〉 = Dj is a subgroup of H. Let k be an element in K and consider πj(k).

If πj(k) 6= 1, then πj(k) inverts some element of odd prime order in Dj by Baer-
Suzuki. Then k inverts an element in H and therefore k inverts an element in
H [Asch, (8.1)(1)]. This yields a contradiction to 3.4. Therefore, πj(k) = 1 for
all k ∈ K, which contradicts G = 〈K〉.

This shows B = H. 2

4.1 Some subloops of Bruck loops of 2-power exponent

Now we can prove, that O2(G) is a group to a subloop:

Lemma 4.2 O2(G)H∩K = O2(G)∩K and O2(G) = (O2(G)∩H)(O2(G)∩K).

Proof. By 4.1, O2(H) = 1. By 3.1 the subgroup O2(G)H defines a subloop,
which is soluble by 3.5 (3). Therefore 〈K ∩ O2(G)H〉 is a 2-group by 3.5 (2),
which yields 〈K ∩O2(G)H〉 ≤ O2(O2(G)H) = O2(G). Now the Dedekind iden-
tity implies the statement. 2

Then application of Lemma 3.1 shows that O2(G) is a group to a subloop.
There are lots of other subloops: Let I := {1, 2, ..., e} and let GJ be the preimage
of

∏
j∈J

Dj for J ⊆ I.

Lemma 4.3 GJ = (GJ ∩H)(GJ ∩K) for every J ⊆ I.

Proof. For J = ∅ this is 4.2 and for J = I this is the loop folder property.
Let x ∈ GJ and x = hk with h ∈ H, k ∈ K. Let l ∈ I − J . As πl(x) = 1, we

cannot have πl(k) 6= 1: Else by 4.1(2), πl(k) is some involution of PGL2(ql) out-
side PSL2(ql). But πl(H) = Bl and Bl contains only involutions from PSL2(ql).
So πl(k) = 1, thus πl(h) = 1 too. This implies the statement. 2

4.2 Preparations for Sylow’s Theorem

Our next goal is to produce subloops to certain Sylow-2-subgroups P of G.
Therefore we calculate |P+ ∩ Λ|.
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Lemma 4.4 For every J ⊆ I, G has a unique conjugacy class CJ of elements
such that whenever t ∈ CJ , then πi(t) = 1 for i 6∈ J and πi(t) is some involution
in Di \D′

i for i ∈ J . Moreover

|CJ | =
∏

j∈J

qj
qj − 1

2
.

Proof. This is immediate from the structure of G. Recall, that for q odd, the
centralizer of an involution in PGL2(q) is the normalizer of a torus of size either
q− 1 or q +1. In our case q− 1 is divisible by 4, so inner involutions of PSL2(q)
have a centralizer of size 2(q − 1) while outer involutions have centralizer size
2(q + 1). 2

For J ⊆ I let t ∈ CJ . We denote by O2(G+)t the full preimage of t in G+.
The number nJ := |O2(G+)t ∩ Λ| is well defined and independent of the choice
of t ∈ CJ . Then

n∅ = |O2(G+) ∩ Λ| = |O2(G) ∩K| = |O2(G) : O2(G) ∩H|
by 4.3.

Lemma 4.5

nJ =
n∅ · 2|J|∏

j∈J

(qj − 1)

Proof. By 4.3 GJ defines a subloop, so |GJ : GJ ∩H| = |GJ ∩K| = |G+
J ∩ Λ|.

As
|GJ : GJ ∩H| = |GJ : GJ ∩H||O2(G) : O2(G) ∩H|,

we have
|GJ : GJ ∩H| = n∅

∏

j∈J

(qj + 1).

On the other hand
|G+

J ∩ Λ| =
∑

L⊆J

nL|CL|.

We therefore get a system of equations for the nJ .
Now the statement can be shown by induction on |J |. For example for |J | = 1

we get the equation n∅(qj + 1) = n∅ + n{j} · qj
qj−1

2 , which gives n{j} = 2n∅
qj−1 .

In general we have:

n∅
∏

j∈J

(qj + 1) =
∑

L⊆J

nL

∏

j∈L

qj
qj − 1

2
.

For L ⊆ J , L 6= J we have the formula for nL by induction. On the other hand
for any numbers qj , j ∈ J the equation

∏

j∈J

(qj + 1) =
∑

L⊆J

∏

j∈L

qj

holds. After some calculation this gives exactly the formula for nJ . 2
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Lemma 4.6 Let P ∈ Syl2(G). Then

|P ∩K| = |P+ ∩ Λ| = 2en∅ = |G : H|2 = |X|2.

If P ∩O2(G)H ∈ Syl2(O2(G)H), then P = (P ∩H)(P ∩K).

Proof. Notice that |P+ ∩ Λ| is independent of the choice of P , as Λ is G+-
invariant.

Furthermore, |P ∩K| = |P+ ∩ Λ| as τ ∈ O2(G+) ≤ P+.
We choose P ∈ Syl2(G) with P ∩ O2(G)H ∈ Syl2(O2(G)H). Then also

P+ ∩O2(G+)H+ ∈ Syl2(O2(G+)H+).
Let i ∈ I and consider Pi = πi(P ) ∈ Syl2(Di). Then Pi is a dihedral group,

Pi ∩H is a cyclic group of size qi − 1. The other coset of Pi ∩H in Pi consists
entirely of involutions, half of them involutions in D′

i and half of them in Di\D′
i.

As all involutions in Di \D′
i are conjugate in G, it follows

πi(P+) ∩ Λ = 1 +
qi − 1

2
,

where 1 is a summand as 1 ∈ Λ. This shows for J ⊆ I:

|P+ ∩ CJ | =
∏

j∈J

qj − 1
2

.

As
|P+ ∩ Λ| =

∑

J⊆I

nJ |P+ ∩ CJ |,

it follows that

|P+ ∩ Λ| =
∑

J⊆I

n∅2|J|∏
j∈J

(qj − 1)

∏

j∈J

qj − 1
2

= 2|I|n∅ = 2en∅.

By the Dedekind identity we have O2(G+)(P+∩H+) = P+∩O2(G+)H+. This
gives

|O2(G+)||P+ ∩H+|
|O2(G+) ∩ P+ ∩H+| = |P+ ∩O2(G+)H+|.

Theorem 6 yields

|P+ ∩O2(G+)H+| = |G+|2
|G+ : O2(G+)H+|2 =

|G+|2
2e

.

As O2(G) ≤ P and

|O2(G)|/|O2(G) ∩ P ∩H| = |O2(G) : O2(G) ∩H| = n∅,

it follows that

|P+ ∩H+| = |P ∩H| = |G|2
2en∅

and therefore,
|P : P ∩H| = 2en∅.

Hence |P : P ∩H| = |P ∩K|, which yields P = (P ∩H)(P ∩K).
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Moreover,

|X|2 = |K|2 = |G : H|2 = |G : O2(G)H|2|O2(G)H : H|2
= 2e|O2(G) : O2(G) ∩H| = 2en∅.

2

4.3 Sylow’s theorem for Bruck loops of 2-power exponent

Next we show, that the subloops of size |X|2 have some nice properties. There-
fore, we need to recall some facts about PGL2(q).

Lemma 4.7 Let Z ∼= PGL2(q) with q = 9 or q ≥ 5 a Fermat prime. Let B be
a Borel subgroup of G and C the class of involutions in Z \ Z ′.

(1) B has two orbits on Syl2(Z): one orbit of size q and one of size |B|
2 .

(2) If P ∈ Syl2(Z), then either P ∩B ∈ Syl2(B) or |P ∩B| = 2.

(3) Let A ⊆ {1}∪C and suppose that D = 〈A〉 is a 2-group such that D = (D∩
B)A. Then there is a Q ∈ Syl2(Z) such that D ≤ Q and Q∩B ∈ Syl2(B).

Proof. Let Ω be the set of points of the projective line related to Z. Then
|Ω| = q + 1 and Z acts triply transitive on Ω. Morever, B is the stabilizer in Z
of a point a of Ω and every 2-Sylow subgroup of G is the setwise stabilizer of
two points of Ω.

It follows that B has two orbits on the set of pairs: one consisting of the
pairs containing a and the other one consisting of those not containing a. Their
length are q and q(q − 1)/2, respectively. This shows (1).

If P ∈ Syl2(Z) fixes a pair in the first orbit, then P ∩ B ∈ Syl2(B). If P
fixes a pair in the second orbit, then P ∩ B fixes a point and a pair of points
setwise and is therefore just an involution, which is (2).

As D = (D∩B)A, it follows that |D : D∩B| = 2. Thus D∩B fixes the point
a and aD is of length 2. Let Q be the stabilizer of aD in G. Then Q ∈ Syl2(Z),
D ≤ Q and Q ∩B ∈ Syl2(B), which is (3). 2

The following is fundamental for the proof of the 2-Sylow Theorem.

Lemma 4.8 Let (G,H, K) be a faithful BX2P-envelope and U a 2-subgroup of
G such that

• U = 〈U ∩K〉
• U = (U ∩H)(U ∩K).

Then there is a Sylow-2-subgroup Q of G such that U ≤ Q and Q ∩O2(G)H ∈
Syl2(O2(G)H).

Proof. For fixed 1 ≤ i ≤ e let

Z := πi(G), D := πi(U), B := πi(H) and A := πi(U ∩K).
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By 4.1
C := πi(K)− {1}

is the class of involutins in Z \Z ′. Moreover by the homomorphism property of
πi it follows that

πi(U) = πi(U ∩H)πi(U ∩K).

This yields, as
πi(U ∩H) ≤ πi(U) ∩ πi(H) = D ∩B,

that D = (B∩B)A. Hence, Z, B,A, D satisfy the assumptions of 4.7(3). There-
fore, 4.7(3) implies that πi(U) is contained in a Sylow 2-subgroup Qi of πi(G)
and that Qi ∩H is a Sylow 2-subgroup of πi(H).

Let Q be the preimage of
∏
i∈I

Qi. Then U ≤ Q and

Q ∩O2(G)H ∈ Syl2(O2(G)H)

as asserted. 2

Corollary 4.9 Let X be a finite Bruck loop of 2-power exponent and Y a soluble
subloop of X.

(1) Then there is a subloop Z of X such that Y ≤ Z and |Z| = |X|2.
(2) All subloops of X of size |X|2 are conjugate under H.

Proof. If Y is soluble, then Y is a 2-loop by 3.5(1). Let (G, H, K) be a faithful
BX2P-envelope to X. Then there is a subgroup U of G such that

• U = 〈U ∩K〉
• U = (U ∩H)(U ∩K) by 3.1

• U is a 2-group by 3.5(2)

Hence by 4.8 there is a 2-Sylow subgroup Q of G such that U is contained in
Q and such that Q ∩ O2(G)H ∈ Syl2(O2(G)H). Now 4.6 and 3.1 imply that
(Q,Q ∩H,Q ∩K) is a subfolder of our chosen folder. Let Z the subloop of X
related to that subfolder. As Q ∩ O2(G)H is a 2-Sylow subgroup of O2(G)H,
the intersection Q ∩H is a Sylow 2-subgroup of H. As Q = (Q ∩H)(Q ∩K) it
follows that |Q ∩K| = |X|2, which proves (1).

Let Y2 be a subloop of X of size |X|2. Then Y2 is soluble and therefore by
(1) there is 2-Sylow subgroup P of G such that (P, P ∩H,P ∩K) is a subfolder
to a subloop Z2 which contains Y2 and which is of order |X|2. This shows that
Y2 = Z2. Recall that G/O2(G) = D1×· · ·×De with Di

∼= PGL2(qi) and e ≥ 0.
Then, as P ∩H is a Sylow 2-subgroup of H (see also 4.7(2)), according to 4.7(1)
there is an element h in H which maps Q onto P . 2

Now we can easily prove Theorem 2.

Proof of Theorem 2 for Bruck loops of 2-power exponent. As the set
consisting of the 1-element of X is a soluble subloop of X, Corollary 4.9 yields
(1). (2) is the second statement of the corollary.

If Y is a subloop of X of 2-power order, then Y is soluble by 3.5(1). Therefore
(3) follows from Corollary 4.9 as well. 2
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4.4 Lagrange’s theorem

Now we can prove Lagrange’s theorem for Bruck loops of 2-power exponent.

Proof of Theorem 3 for X a Bruck loop of 2-power exponent. By 4.6,
we have |Y |2 ≤ |X|2: There is a subloop of Y of size |Y |2, which is soluble by
3.5. Let U ≤ G be the 2-group related to this subloop; so |U ∩K| = |Y |2. As
|P ∩K| = |X|2 for any Sylow-2-subgroup of G, |Y |2 is a divisor of |X|2.

Suppose Y is nonsoluble. Then |Y |2′ 6= 1. There is a subgroup U ≤ G such
that U = (U ∩ H)(U ∩ K), U = 〈U ∩ K〉 and |Y | = |U : U ∩ H| = |U ∩ K|.
By 3.5 U is not a soluble group. We may use Theorem 6 on U . The map
θ : U → G : u 7→ O2(G)u gives a homomorphism from U into G and an
injection from U/(O2(U) ∩O2(G)) into G.

Assume there is Di ≤ G such that πi(U) is properly contained in Di. If
πi(U) 6= 1, then πi(U) 6= 1 ∼= Alt5 and Di

∼= Alt6. Elements of odd order from
U ∩H map to elements of odd order in H, which yields a contradiction. Hence
components of U/O2(U) project surjectively onto components of G/O2(G). This
implies together with 3.6 that

|Y | = 2a
∏

j∈J

(qj + 1) where J is a subset of {1, . . . , e}.

This shows that the odd part of |Y | divides |X|.
As we already saw that |Y |2 ≤ |X|2, it follows that the order of Y divides

the order of X. 2

5 The finite Bruck loops

In this section we prove the main theorems.

Proof of Theorem 1. Let X be a finite Bruck loop. Then according to [AKP,
Theorem 1]

X = O2′(X) ∗O(X), where Z := O2′(X)

is the subloop generated by all 2-elements of X and Y := O(X) the largest
normal subloop of X of odd order. Notice, that the definition of the subloop Z
is different from that one in [AKP]. Let (G,H,K) be the Baer-envelope of X
and set

G2 := O2′(G).

Then G2 is the enveloping group of the loop Z, see [AKP, Proof of 6.1]. More-
over, G1 := O2(G) is the enveloping group of O(X) and G = G1 ∗G2, see [AKP,
Proof of 6.1]. Set U := G1∩G2 and T = Z ∩Y . Then U is a subgroup of Z(G2)
and therefore, it acts semiregularly on Z.

Moreover, Z/T is a Bruck loop of 2-power exponent with enveloping group
G2/V where V ≤ U is the enveloping group of T , see [AKP] Theorem 1 and
[Asch] 2.8. In particular, V is a subgroup of Z(G2) of odd order.

Set G̃2 = G2/V . Then G̃2/O2(G̃2) ∼= D1 × · · · ∼= De with Di
∼= PGL2(qi),

where qi is a Fermat prime or 9 by Theorems 6 and 7
We claim that G2 splits over V . Clearly, O2(G2)V splits over V . Therefore,

G2 splits over V if and only if G2 := G2/O2(G2) splits over V .
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Moreover, G2 splits over V if and only if the preimage Li of Di in G2 splits
over V , for 1 ≤ i ≤ e. As Li/V ∼= PGL2(qi) and V is of odd order it follows
that the extension splits or that qi = 9 and |L∞i ∩ V | = 3, see [Atlas, p. XVI,
Table 5]. Assume the latter. Then every involution in Li \ L′i inverts L∞i ∩ V ,
see the action of the autormorphism 23 of PSL3(4) on the Schur-multiplier of
order 3 of PSL3(4) in [Atlas, p. 23 ], which contradicts V ≤ Z(G2). 2

Proof of Theorem 3. Following Bruck, it is enough to show, that this condi-
tion holds already in simple Bruck loops, see [Bruck, Chapter V, p. 93, Lemma
2.1] . As simple Bruck loops are either of prime order or of 2-power exponent,
we get the result from the proof of Theorem 3 in the case of Bruck loops of
2-power exponent.

A different proof of Theorem 3 without quoting Bruck is to apply Theorem 1
and the proof of Theorem 3 in the case of Bruck loops of 2-power exponent. 2

Proof of Theorem 2. The assertion follows from Theorem 1 and the proof of
Theorem 2 in the case of Bruck loops of 2-power exponent. 2

Proof of Theorem 4. Every finite Bruck loop of odd order is soluble, see
Theorem 14 of [Glaub2], and contains therefore Hall π-subloops, Theorem 12
[Glaub2]. If X is a soluble Bruck loop, then by Theorem 1 X is the direct
product of a Bruck loop of odd order and a Bruck loop of 2-power order. Hence
there is a π-subloop for every subset π of Π.

Now assume that X is a Bruck loop such that there is a π-subloop for every
subset π of Π. If X is of odd order, then it is soluble. Assume now that
O2′(X) 6= 1. If O2′(X) is not of 2-power order, then there is qi, qi = 9 or qi ≥ 5
a Fermat prime such that a prime divisor r 6= 2 of qi + 1 divides |O2′(X)|, see
Corollary 3.6. As there is no Bruck loop of r-power order, see Theorem 1, it
follows that O2′(X) is of 2-power order and therefore soluble by 3.5. 2

Proof of Theorem 5. The previous proof also shows Theorem 5. 2

5.1 Open questions

There are still some open questions on Bruck loops:

• For which q exist M -loops and/or N -loops as defined in [AKP] and [Asch]?
There are only known examples for q = 5.

• Are there infinitely many Fermat primes ? This is number theory...

• What is the structure of simple Bruck loops in detail? There are known
examples with two composition factors of type Alt5. Are the nonabelian
composition factors of G in a simple Bruck loop pair wise isomorphic?

• Is there a way to get the structure of O2(G) under control in M -loops,
N -loops and/or Bruck loops of 2-power exponent (For the definition of an
N and an M -loop see [BSS])?
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